Ang equation ng lugar para sa isang ellipse ay magiging madali kung pinag-aralan mo ang mga lupon dati. Ang pangunahing puntong dapat tandaan ay ang isang ellipse ay may dalawang mahahalagang haba upang masukat, lalo ang pangunahing at menor de edad na radii.
Hakbang
Bahagi 1 ng 2: Kinakalkula ang Lugar
Hakbang 1. Hanapin ang pangunahing radius ng ellipse
Ang radius na ito ay ang distansya mula sa gitna ng ellipse hanggang sa pinakamalayong dulo ng ellipse. Isipin ang mga radii na ito bilang "umbok" na radii ng ellipse. Sukatin ang radius o hanapin ang radius na nakasaad sa iyong diagram. Titingnan namin ang mga daliri na ito bilang a.
Maaari mo itong tawaging semimajor axis
Hakbang 2. Hanapin ang menor de edad na radius
Tulad ng nahulaan mo, sinusukat ng menor de edad na radius ang distansya mula sa gitna ng ellipse hanggang sa pinakamalapit na punto sa dulo ng ellipse. Tawagin ang mga daliri na ito b.
- Ang radius na ito ay may tamang anggulo na 90 degree na may pangunahing radius. Gayunpaman, hindi mo kailangang sukatin ang bawat anggulo upang malutas ang problemang ito.
- Maaari mo itong tawaging semiminor axis.
Hakbang 3. Pag-multiply ng pi
Ang lugar ng ellipse ay a x b x. Dahil nagpaparami ka ng dalawang mga yunit ng haba, ang iyong sagot ay nakasulat sa mga yunit ng mga parisukat.
- Halimbawa, kung ang isang ellipse ay may pangunahing radius na 3 mga yunit at isang menor de edad na radius na 5 mga yunit, ang lugar ng ellipse ay 3 x 5 x o tungkol sa 47 mga parisukat na yunit.
- Kung wala kang calculator o kung ang iyong calculator ay walang simbolo, gumamit lamang ng 3, 14.
Bahagi 2 ng 2: Pag-unawa sa Paano Ito Gumagawa
Hakbang 1. Isipin ang lugar ng isang bilog
Maaari mong tandaan na ang lugar ng isang bilog ay katumbas ng r2, na katumbas ng x r x r. Paano kung susubukan nating hanapin ang lugar ng isang bilog na parang isang ellipse? Susukatin namin ang radius sa alinmang direksyon: r. Sukatin ang radius na nasa tamang anggulo: din r. I-plug ang halagang iyon sa formula para sa equation ng ellipse: x r x r! Bilang ito ay naging, ang mga bilog ay isang tiyak na uri ng ellipse.
Hakbang 2. Isipin ang isang pinindot na bilog
Isipin ang isang bilog na pinindot upang ito ay bumuo ng isang ellipse. Habang ang bilog ay pinindot nang higit pa at higit pa, ang isa sa mga radii ay naging mas maikli at ang iba pang mga radii ay naging mas mahaba. Ang lugar ay nananatiling pareho dahil walang umalis sa bilog. Hangga't ginagamit namin ang parehong radii sa aming equation, ang diin at pagkakahanay ay makakansela sa bawat isa, at makakakuha pa rin kami ng tamang sagot.